饱和解的存在区间称为解的最大存在区间,通常为开区间,延拓的原则可以定义一个与其定义的任何特定区域无关的解析函数,解的延拓是指不能继续延拓的解称为饱和解。
函数的延拓是指设E与F为两个集合,P为E的子集,而f为从P到F中的映射,任一从E到F中的映射,如果它在P上的限制为f,则称该映射为f在E上的延拓。
如果最大存在区间包含端点,那么解可以反复使用解的存在唯一性定理,将存在区间加长的方法再延拓,因而最大存在区间一定是开区间,解的延拓定理则给出了延拓的最终结果。
免责声明:本网所有内容(包括且不仅限于图文音视频)均由用户自行上传分享,仅供个人学习交流分享。如侵害到您的权利,请联系:[email protected]