指数函数比大小方法可以用构造函数法,要点是利用函数的单调性,数的特征是同底不同指(包括可以化为同底的),若底数是参变量要注意分类讨论,或者用中间值比较法,用别的数如0或1做桥,数的特征是不同底不同指。
指数函数的基本性质:
(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为(0,+∞)。
(3)函数图形都是上凹的。
(4)a>1时,则指数函数单调递增,若0 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
免责声明:本网所有内容(包括且不仅限于图文音视频)均由用户自行上传分享,仅供个人学习交流分享。如侵害到您的权利,请联系:[email protected]